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Abstract: The motivation behind this paper is to investigate the use of Softmax   

model for classification. We show that Softmax model is a nonlinear 

generalization for the logistic discrimination, that can approximate the posterior 

probabilities of classes where other Artificial neural network (ANN) models don't 

have this ability. We show that Softmax model has more flexibility than logistic 

discrimination in terms of correct classification. To show the performance of 

Softmax model a medical data set on thyroid gland state is used.  The result is that 

Softmax model may suffer from overfitting. 
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1. Introduction 

Discrimination and classification analysis are two multivariate techniques, which separate 

distinct observation sets and allocate a new observation to preidentified set of classes. In 

classification and discrimination, there are some explanatory or independent variables with a 

dependent variable, which is a categorical variable showing the class of observations. The 

purpose is to investigate a suitable technique for assigning new observations to one of the 

classes. Many classification methods have been developed and have been used, such as K-

nearest neighbor, logistic discrimination, feed forward neural networks, support vector machine 

and learning vector quantization. Nevertheless, some of these techniques have disadvantages 

(Al-Daoud, 2009). 

Logistic discrimination is one of the most popular methods for classification based on 

likelihood function of classes. This method was generalized by Anderson (1972) and then he 

obtained parameters to this method by different forms of sampling. Anderson (1975) also 

introduced quadratic logistic discrimination. Anderson and Richardson (1979) introduced an 

effective method for bias correction to obtain parameters to this method. Later Albert and 

Anderson (1984) studied existence or not existence of estimating parameters to this method. 

Cox and Ferry (1991) and Pearce (1996) introduced a powerful logistic discrimination. In 
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logistic discrimination bayes rule is used to obtain posterior probabilities of the classes. In this 

procedure, each observation is allocated to the class which has higher posterior probability. 

This allocation is optimum (Webb, 2002). 

Nowadays, statistical methods have constituted a very powerful tool to support medical 

decisions. Data mining techniques like logistic discrimination are applied to medical data to 

identify the patterns that are helpful in predicting or diagnosing the diseases and taking  

therapeutic measure of those diseases. Medical data and their statistical analysis are very 

powerful tools for doctors in interpreting property and supporting their decision. As in medical 

data we involve with the huge numbers of variables to be considered, the development of new 

techniques in the statistical  analysis, as neural networks, are required (Esteban, et al., 2006).  

Neural networks is considered as a field of artificial intelligence. The development of the 

models was inspired by the neural architecture of the human brain. ANN models have been 

applied for many disciplines, including biology, statistics, mathematics, medical science, 

computer science, finance, management, and marketing. ANN models are well-known for 

capturing the complex non-linear relations present in data. ANN can be constructively used to 

improve the quality of linear models in medical data set. Raghavendra and Srivatsa (2011) 

reviewed the literature in the field of using logistic discrimination and artificial neural network 

model in medical databases.  Logistic discrimination model has poor performance in many 

cases since it uses a hyperplane to separate classes. ANN models become very popular in recent 

years for classification and because of high flexibility of these methods, they have good results 

in classification. In this paper, we show that Softmax model, as a special case of ANN models, 

can be considered as a generalization of logistic discrimination, and so we set a statistical 

support for Softmax neural network model; and we also show that Softmax model has better 

results than the logistic discrimination, although this model may be suffered from over fitting.  

The rest of the paper is organized as follows: Section 2 is dedicated to logistic 

discrimination. Artificial neural network models are discussed in Section 3.  Section 4 provide 

the investigation of Softmax model. In Section 5, we analyze results on medical data set, and 

the conclusions of the paper are given in the last Section. 

 

2. Logistic discrimination   

Logistic discrimination is a predictive model with a categorical target variable which can be 

used as the prediction of the posterior probability of the classes. Suppose there exists J class  

𝐺1 ,…, 𝐺𝐽  and the observation x = (𝑥1, … , 𝑥𝑝 )', has to be classified (the elements of x are 

explanatory variables) to one of the these classes. In logistic discrimination, one of the classes 

is considered as basis class and the ratio of other classes are modeled toward this basis class. 

Without loss of generality, we select class J as basis class then the essential assumption of 

logistic discrimination for class k can be written as: 

ln [
𝑙(𝑥|𝐺𝑘

𝑙(𝑥|𝐺𝐽
] = 𝜔0𝑘

∗ + ∑ 𝜔𝑖𝑘𝑥𝑖,   𝑘 ∈ {1,2, … , 𝐽 − 1}                            (1)

𝑝

𝑖=1
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where l(x| 𝐺𝑘 ) is the likelihood function to the class k, k ∈ { 1,2, … , 𝐽 − 1 }and 

ω0𝑘
∗ , ω1𝑘, … , 𝜔𝑝𝑘, 𝑘 ∈ {1, … , 𝐽 − 1} are the parameters to be estimated from training set of data. 

It could be seen that in the equation (1) the ratio of likelihood functions is modeled by a linear 

function of the observation which is a hyperplane. Therefore, although the logistic 

discrimination doesn't impose any assumption on the likelihood functions, but the ratio of them 

has been considered as parametric function of observation. Anderson(1972, 1975) proved that 

the equation (1)  can be employed for different families of statistical distributions such as 

multivariate normal distribution with common covariance matrix and multivariate discrete 

distributions that follow loglinear model with same interaction terms. From equation (1) we 

have: 

ln [
𝑙(𝑥|𝐺𝑘

𝑙(𝑥|𝐺𝐽
] = exp (ω0𝑘

∗ + ∑ 𝜔𝑖𝑘𝑥𝑖),   𝑘 ∈ {1,2, … , 𝐽 − 1}.

𝑝

𝑖=1

                      (2) 

Using the Bayesian methodology, let π𝑘, 𝑘 ∈ {1, … , 𝐽} be the prior probability of 𝐺𝑘. Then 

𝑝(𝐺𝑘|x) = 
𝑙(𝑥|𝐺𝑘)𝜋𝑘

𝑝(𝑥)
, 𝑘 ∈ {1, … , 𝐽} 𝑝(𝐺𝑘|x) is the posterior probability for the class k conditioned 

on observation x and 𝑝(x) =∑ 𝑙𝐽
𝑗= (x|𝐺𝑗)π𝑗 is the marginal density function of  x. So from (2) we 

obtain: 

𝑝(𝐺𝑘|x)

𝑝(𝐺𝑗|x)
= exp (𝜔0𝑘

∗ + ∑ 𝜔𝑖𝑘x𝑖

𝑝

𝑖=1

) 

 

and ω0𝑘 = ω0𝑘
∗ + ln (𝜋𝑘/𝜋𝑗). If the classes cover all the observations space, then we have 

to write ∑ 𝑃(𝐺𝑘|
𝐽
𝑘=1 x) = 1 and from above equation will get: 

𝑃(𝐺𝑘|x)  =
exp(ω0k + ∑ 𝜔𝑖𝑘𝑥𝑖

𝑝
𝑖=1 )

1 + ∑ exp(𝜔0𝑘 + ∑ 𝜔𝑖𝑘𝒙𝑖
𝑝
𝑖=1 )

J−1
j=1

, 𝑘 ∈ {1,2, … , 𝐽 − 1}                      (3) 

          

   𝑃(𝐺𝑗|𝑥)  =  
1 

1 + ∑ exp (𝜔0𝑘 + ∑ 𝜔𝑖𝑘𝒙𝑖
𝑝
𝑖=1 )

𝐽−1
𝑗=1

.                                                                (4) 

Equations (3) and (4) show logistic function: the logistic function is useful because it can 

take an input of any value from negative infinity to positive infinity, whereas the output is 

confined to values between 0 and 1 (Raghavendra and Srivatsa, 2011). In logistic 

discrimination after obtaining posterior probabilities, the bayes optimum discrimination rule is 

used for classification. Any observation is allocated to the class with highest posterior 

probability. The boundaries between the classes, decision boundaries, are hyperplanes and can 

be obtained from equation p(𝐺𝑘|x)= P(𝐺𝑗 |x) for 𝑘, 𝑗 ∈ {1, … , 𝐽} as bellow:  

1) For classes’k and J where k 
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𝜔0𝑘 + ∑ 𝜔𝑖𝑘x𝑖

𝑝

𝑖=1

= 0                                                                    (5) 

2) For classes m and n where  m≠ n < J  the decision boundary to consist of: 

(𝜔0𝑚 − 𝜔0𝑛) + ∑(𝜔𝑖𝑚𝜔𝑖𝑛)𝐱𝑖

𝑝

𝑖=1

= 0                                             (6) 

As can be seen in logistic discrimination the decision boundaries between all classes are 

linear. 

 

3. Artificial Neural Network models   

Artificial neural network models are computing systems made up of the large number of 

simple, highly interconnected processing units (neurons) that abstractly emulate the structure 

and   operation of biological nervous system(Subasi and Ercelebi, 2005). Every model has a set 

of units, which arranged in input, hidden and output layers. An artificial neural network model 

is a complex nonlinear modeling is used to predict output layers (dependent variables) from a 

set of input layers (independent variables) by taking linear combination of inputs and then 

making nonlinear transformations of the linear combinations using activation function. It can be 

shown that such combinations and transformations can approximate any type of response 

function.   These methods are particularly valuable when ANN models use input variables in 

the first layer and Network outputs is  a solution to a problem; in the classification  problems, 

network output shows the observation class,  several hidden layers can be placed between input 

and output layer. Neural networks can be broadly classified into three categories, namely, 

feedforward neural networks, feedback neural networks and the combination of both 

feedforward and feedback neural networks (Rao, 2011).  

The multilayer perceptron (MLP) model is a kind of feedforward neural network that can 

be used for classification and function approximation tasks. The architecture of MLP may 

contain two or more layers. A simple two-layer ANN consists only of an input layer containing 

the input variables for the problem and output layer containing the solution for the problem. 

This type of network is a satisfactory approximation for linear problems. However, for 

approximating nonlinear systems, additional intermediate (hidden) processing layers are 

employed to handle the problem’s nonlinearity and complexity, (Subasi and Ercelebi, 2005). In 

MLP model units connected in successive layers by one way forward connections. Figure (1) 

shows an MLP model with a hidden layer. In classification, the number of input layer units is 

equal in the number of explanatory variables, and the number of output layer units is equal to 

the number of classes. The number of hidden layer units is a problem which is, to some extent, 

difficult to solve and usually specified by trial and error such that minimum misclassification 

will be obtained. In general for MLP model, the weights are adjusted to realize the global 

minimum of the total error in the training data on the weight space. Irrespective of topology of 

the MLP, minimization of the training error leads to the optimization of the performance of 

their respective tasks. The designed tasks may be either classification or the function 
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approximation. The backpropagation learning algorithm is used for adjusting the weights within 

the network to minimize the mean squared error in the output (Rao, 2011). 

Although it depends upon the complexity of the function or process being modeled, one 

hidden layer may be sufficient to map an arbitrary function to any degree of accuracy, (Subasi 

and Ercelebi, 2005). Hence three-layer architecture MLP model have been adopted for the 

present study. Equation (7) shows the multilayer perceptron model with one hidden layer and 

identity function in output layer units 

𝑔𝑘(𝑥) = 𝜔0𝑘
𝑜 + ∑ 𝜔𝑟𝑘

𝑜𝑙
𝑟=1 𝜑(𝜔0𝑟

ℎ + ∑ 𝜔𝑖𝑟
ℎ 𝑥𝑖

𝑝
𝑖=1 )       𝑘 ∈ {1,2, … , 𝐽}                          (7)       

 

 

Figure 1  

Figure 1 about here 

where p, l, J are the units of input layer, hidden layer and output layer, respectively. The 

symbols h and o in order refer to hidden and output layers 𝜔1𝑟
ℎ , … , 𝜔𝑝𝑟

ℎ  for  𝑟 ∈ {1, … , 𝑙} are the 

hidden layer weights and 𝜔0𝑟
ℎ  for  𝑟 ∈ {1, … , 𝑙}  are biases of this layer. 𝜔1𝑘

𝑜 , … , 𝜔𝑙𝑘
𝑜 , for k 

∈{1,…,J} are output layer weights and 𝜔0𝑘
𝑜  for 𝑘 ∈ {1, … , 𝐽} biases of output layer. 𝜑(. ) is a 

nonlinear transformation in hidden units and usually is a sigmoidal function such as logistic 

sigmoid function  (𝜑(𝑥) =
1

1+exp(−𝑥)
). There are some reasons to use logistic function as 𝜑(.) 

(see Schalkoff, 1997 for more detail). 

 

4. Softmax model as generalization of the logistic discrimination  

As it was mentioned before the optimal bayes classification based on allocating with higher 

posterior probability can be used for logistic discrimination. To increase the ability of MLP 

models in classification the use of Softmax function in output units rather than identity function 
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was suggested. The main idea behind this model is to approximate the posterior probability of 

classes (Hastie et al., 2001, Lindemann et al., 2003). In the Softmax neural network model, the 

outputs of network are posterior probabilities of classes and have the form. 

𝑃(𝐺𝑘|x)  =  
exp(𝑔𝑘(x))

∑ exp(𝑔𝑘(x))
𝐽
𝑖=1

      𝑘 ∈ {1, … , 𝐽}                                   (8) 

where 𝑔𝑘(x),  𝑘 ∈ {1, … , 𝐽} is defined in equation (7). The main idea of this model is to 

approximate the probability density function for the dependent variable. Notice that in the 

Softmax model, the outputs are positive and sum to 1. So using Softmax function in the units of 

output layer, we can approximate the posterior probabilities of classes in the neural network 

classification then select the most probable. The weights of the model are estimated alike other 

MLP model based on backpropagation algorithm which is explained in section 3.  We can 

rewrite the (8) as 

𝑃(𝐺𝑘|x) =  
exp(𝑔𝑘(x))

1 + ∑ exp(𝑔𝑘(x))
𝐽−1
𝑖=1

, 𝑘 ∈ {1, … , 𝐽 − 1}                           (9) 

𝑃(𝐺𝐽|x) =  
1

1 + ∑ exp(𝑔𝑖(x))
𝐽−1
𝑖=1

.                                                                 (10) 

                                                          

and we referred to these as Softmax model. Replacing (7) in (9) and (10) posterior 

probabilities obtain as bellow: 

𝑃(𝐺𝑘|x)  =  
exp [𝜔0𝑘

𝑜 + ∑ 𝜔𝑟𝑘
𝑜 𝜑(𝜔0𝑟

ℎ + ∑ 𝜔𝑖𝑟
ℎ xi

𝑝
𝑖=1 )𝑖

𝑟=1 ] 

1 + ∑ exp [𝜔𝑟𝑗
𝑜 𝜑(𝜔0𝑟

ℎ + ∑ 𝜔𝑖𝑟
ℎ xi

𝑝
𝑖=1 )]𝐽−1

𝑗=1

                              (11) 

                               

   𝑃(𝐺𝑘|x)  =  
1

1 + ∑ exp[𝜔0𝑘
𝑜 + ∑ 𝜔𝑟𝑗

𝑜𝑙
𝑟=1 𝜑(𝜔0𝑟

ℎ + ∑ 𝜔𝑖𝑟
ℎ xi

𝑝
𝑖=1 )]

𝐽−1
𝑗=1

              (12) 

                  

Probabilities in (11) and (12) can be interpreted as the generalization of logistic 

discriminations because they are generalization upon logistic discrimination with posterior 

probabilities, which are obtained in the equations (3) and (4). As that can be seen, the 

difference between equations (11) and (12) with equations (3) and (4) is in the power of 

exponential function.  In following, we show that classification based on equation (7) is 

coincided on the classification with Softmax model because each class with the largest value in 

equation (7) has the higher posterior probability in the Softmax model.   If it's supposed that 

𝑔(𝑜𝑘) and 𝑔(𝑜𝑙)  are network's outputs in equation (7), and if 

𝑔(𝑜𝑘) > 𝑔(𝑜𝑙),   𝑘, 𝑙 ∈ {1, … , 𝐽}. 

then with monotonic property of exponential function we have: 
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𝑒𝑥𝑝(𝑔(𝑜𝑘))  ≥  𝑒𝑥𝑝(𝑔(𝑜𝑙)) 

and 

exp (𝑔(𝑜𝑘))

1 + ∑ exp (𝑔(𝑜𝑗))
𝐽−1
𝑗=1

≥
exp(𝑔(𝑜𝑙))

1 + ∑ exp (𝑔(𝑜𝑗))
𝐽−1
𝑗=1

⇒  𝑃(𝐺𝑘|x) ≥ 𝑃(𝐺𝑙|x) 

 

Notice that the essential assumption in logistic discrimination is: 

ln [
𝑝(x|𝐺𝑘)

𝑝(x|𝐺𝐽)
] = 𝜔0𝑘 + ∑ 𝜔𝑖𝑘x𝑖

𝑝

𝑖=1

, 𝑘 ∈ {1, … , 𝐽 − 1} 

and 𝜔0𝑘 + ∑ 𝜔𝑖𝑘x𝑖 = 0
𝑝
𝑖=1  is the separated hyperplane for two classes, but in many cases, it 

may be necessary that initially do some transformations on the observation because in such 

situation two classes will separate better with a hyperplane. For example, consider the two 

classes’ case in figure (2); the linear discriminate function didn't separate two classes, even if 

two classes were separable. 

 
Figure 2  

Figure 2 about here 

But using the transformations 

𝜑1(𝑥) = 𝑥1
2,   𝜑2(𝑥) = 𝑥2 

two classes leads to be separated in the 𝜑 space with a straight line (Webb, 2002). Notice 

that rewritten the logistic discrimination as:  

ln [
𝑝(x|𝐺𝑘)

𝑝(x|𝐺𝐽)
] = 𝜔0𝑘

𝑜 + ∑ 𝜔𝑟𝑘
𝑜 𝜑(𝜔0𝑟

ℎ + ∑ 𝜔𝑖𝑟
ℎ 𝐱𝑖

𝑝
𝑖=1 ),𝑙

𝑟=1       𝑘 ∈ {1, … , 𝐽 − 1}            (13) 

then the right-hand side in the above equation shows that the observations are transferred to 

𝜑  coordinates system initially then in this system the hyperplane 𝜔0𝑘
𝑜 + ∑ 𝜔𝑟𝑘

𝑜 𝜑(𝜔0𝑟
ℎ +𝑙

𝑟=1
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∑ 𝜔𝑖𝑟
ℎ 𝐱𝑖

𝑝
𝑖=1 ) = 0 is used as separated boundary; and the right-hand side in the equation (13) is 

an output of MLP model with one hidden layer, l hidden units and identity function in output 

layer units. If we obtain the posterior probabilities from equation (13) the equations (9) and (10) 

will be obtained; so it can be said that Softmax model is a generalization of logistic 

discrimination and Softmax model without any hidden layer is the same of logistic 

discrimination. If the decision boundaries obtain from equation (9) and (10) so: 

1) For class k and J where k 

𝑃(𝐺𝑘|𝑥) =  𝑃(𝐺𝐽|𝑥) 

⟹
exp [𝜔0𝑘

𝑜 + ∑ 𝜔𝑟𝑘
𝑜 𝜑(𝜔0𝑟

ℎ + ∑ 𝜔𝑖𝑟
ℎ 𝐱𝑖

𝑝
𝑖=1 )]𝑙

𝑟=1

1 + ∑ exp [𝜔0𝑘
𝑜 + ∑ 𝜔𝑟𝑘

𝑜 𝜑(𝜔0𝑟
ℎ + ∑ 𝜔𝑖𝑟

ℎ 𝐱𝑖
𝑝
𝑖=1 )]𝑙

𝑟=1
𝐽−1
𝑗=1

 

=
1

1 + ∑ exp [𝜔0𝑘
𝑜 + ∑ 𝜔𝑟𝑘

𝑜 𝜑(𝜔0𝑟
ℎ + ∑ 𝜔𝑖𝑟

ℎ 𝐱𝑖
𝑝
𝑖=1 )]𝑙

𝑟=1
𝐽−1
𝑗=1

 

⟹ 𝜔0𝑘
𝑜 + ∑ 𝜑(𝜔0𝑟

ℎ + ∑ 𝜔𝑖𝑟
ℎ 𝐱𝑖

𝑝

𝑖=1

)]

𝑙

𝑟=1

= 0                                                                                  (14) 

2) For class m and n where m ≠ n < J  have: 

𝑃(𝐺𝑚|𝑥) =  𝑃(𝐺𝑛|𝑥) 

             ⟹  
exp [𝜔0𝑚

𝑜 + ∑ 𝜔𝑟𝑚
𝑜 𝜑(𝜔0𝑟

ℎ + ∑ 𝜔𝑖𝑟
ℎ 𝐱𝑖

𝑝
𝑖=1 )]𝑙

𝑟=1

1 + ∑ exp [𝜔0𝑗
𝑜 + ∑ 𝜔𝑟𝑗

𝑜 𝜑(𝜔0𝑟
ℎ + ∑ 𝜔𝑖𝑟

ℎ 𝐱𝑖
𝑝
𝑖=1 )]𝑙

𝑟=1
𝐽−1
𝑗=1

 

                      =    
1 + exp [𝜔0𝑛

𝑜 + ∑ 𝜔𝑟𝑛
𝑜 𝜑(𝜔0𝑟

ℎ + ∑ 𝜔𝑖𝑟
ℎ 𝐱𝑖

𝑝
𝑖=1 )]𝑙

𝑟=1

 1 + ∑ exp [𝜔0𝑗
𝑜 + ∑ 𝜔𝑟𝑗

𝑜 𝜑(𝜔0𝑟
ℎ + ∑ 𝜔𝑖𝑟

ℎ 𝐱𝑖
𝑝
𝑖=1 )]𝑙

𝑟=1
𝐽−1
𝑗=1

 

   ⟹  (𝜔0𝑚
𝑜 − 𝜔0𝑛

𝑜 ) +  ∑(𝜔𝑟𝑚
𝑜 − 𝜔𝑟𝑛

𝑜 )𝜑(𝜔0𝑟
ℎ + ∑ 𝜔𝑖𝑟

ℎ 𝐱𝑖

𝑝

𝑖=1

) = 0

𝑙

𝑟=1

                 (15) 

If the equations (14) and (15) are compared with equations (5) and (6) it can be seen that 

the decision boundaries obtained in the above equations are generalized linear or in the other 

words nonlinear; because the observations are transferred to the new coordinate system 𝜑 

initially, and then a hyperplane is used to separate every two classes in this system. It is obvious 

that the boundaries obtained in equation (14) and (15) have more flexibility with regard to a 

linear boundary in equations (5) and (6). Furthermore, Softmax model has some advantages. 

The first property is that Softmax model has the same discrimination power as ANN model. 

The second one is that the Softmax model can detect complex and nonlinear relations between 

dependent and independent variables alike ANN models. The third one leads the Softmax 

model and ANN models to have the same prediction. The latter property which is not the case 

for ANN models is that the Softmax model can calculate the posterior probabilities of the 

classes as logistic discrimination. This property allows the Softmax model to use Bayesian 
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optimum rule for classification. However, there are some disadvantages in using the Softmax 

model. First, in appose of logistic discrimination, because of the final version of Softmax model 

is a very complicated function of independent variables; it works similar to a black box model 

and therefore, the coefficients of independent variables cannot be easily interpretated. Secondly, 

because high complexity to the Softmax model, the model suffers from overfitting. For 

explanation, the Softmax model has many parameters so it may follow the noise in the training 

data set due to overparameterization which leading to over fitting and so poor generalization for 

untrained data (Subasi and Ercelebi, 2005). Generally, ANN models have too many parameters 

and will overfit the data at a global minimum. There are two main strategies to prevent 

overfitting. In some developments of ANN models, an early stopping rule was used to avoid 

overfitting. It means that the model is trained only for a while, and stop before approaching the 

global minimum. However, this has the effect of shrinking the final model toward a linear 

model (see Hastie et al., 2001). A more explicit method to prevent overfitting is weight decay, 

which adds a penalty to the error function then the optimization algorithm is used. The penalty 

term takes care of the weight size in a way that it prefers smaller weights over bigger weights 

(Hastie et al., 2001, Lindeman et al., 2003). We show how adding a penalty to error function 

not solved the overfitting in Softmax model. 

 

5. Determination the state of Thyroid Gland using discrimination analysis 

This section aims to compare the traditional method of logistic discrimination to the more 

advanced Softmax technique as the statistical tool for developing classifiers for the diagnosis of 

thyroid gland state. The data show the state of the thyroid gland; generally, the secretions of the 

thyroid gland have three states, normal, low (hypothyroid), and up (hyperthyroid). The 

abnormal secretion of the thyroid gland (low or up) is the cause of many illnesses. This 

example has three independent variables: 

𝑥1: Three Iodo Thyronin 

𝑥2: Thyroxine 

𝑥3: Thyrotropin 

In this research, the data are collected from the 225 cases of Ahvaz University Jahad 

laboratory and the three factor 𝑥1, 𝑥2 and 𝑥3 together with the secretion of the thyroid gland is 

measured; it has been discovered that 105 cases have normal thyroid, 72 cases have 

hyperthyroid and 48 cases have hypothyroid. The original sample is partitioned into two 

subsamples. One of  
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Table 1: The misclassification rate for the two models 

 
 

them is used as training data (150 cases) and another subsample is used as a test sample for 

testing the models (75 cases). We represented three different class with 𝐺1, 𝐺2 and 𝐺3 in order 

for hypothyroid, normal thyroid and hyperthyroid, 𝐺1  is used as basis class and Likelihood 

function of other classes is modeled toward 𝐺1. Logistic discrimination and Softmax models 

were developed using 150 cases, and the test set was used for model validation; for Softmax 

model in optimal situations, three units are determined for hidden layer by trial and error. The 

maximum likelihood estimation (MLE) method is used to estimate the parameters in the 

logistic discrimination, and the Softmax model was trained based on a back propagation 

algorithm for optimization error function with weight decay. Readers can refer to the Hastie et 

al. (2001) and Webb, (2002)  for more details. We followed Ripley (2004) who recommended 

if input data is in the rang of [0,1] an appropriate value of weight decay can be used in [10-4, 10-

1] using the trial-and-error method we obtained 10-3 is an suitable value with minimum error. 

The misclassification rate is calculated in the training and test samples.  The following table 

shows the misclassification rate for the two models: It can be seen that the Softmax model has 

better results in training sample but in the test sample the two models have same performance. 

It is obvious that Softmax model suffered from overfitting in this example. So according to a lot 

of parameters and high computational requirements in training Softmax model in comparison to 

the logistic discrimination it is obvious that using of Softmax model is not profitable in this 

example. 

 

6. Conclusion 

In this paper, we have shown that Softmax model can be considered as the generalization of 

logistic discrimination. It has nonlinear boundary decisions with regard to linear boundary in 

logistic discrimination. The Softmax model have some advantages and disadvantages witch are 

mentioned in section 4. 

The main advantage of the Softmax model is that it can approximate posterior probabilities 

of classes, but the main drawback of Softmax model is that it suffers seriously from the curse of 

overfitting, because in overfitting situation the model has good performance on training data 

but it has poor performance on untrained data. Using the weight decay method to prevent 

overfitting is not effective for Softmax model in our data. Therefore, strategies preventing 

overfitting in the Softmax models should be investigated in order to use the advantages of 

Softmax model in the classification. 
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